The Truth Behind “Beer Before Liquor”

2 minute read
Originally posted here: https://mcgill.ca/oss/article/did-you-know-health/beer-liquor

Have you ever heard the saying “beer before liquor never been sicker”? Or “liquor before beer, you’re in the clear”? What about “grape or grain but never the twain”? Well, it turns out that there might be some truth to at least some of these adages.

There are a few factors to consider here.

First, there’s the absolute volume of alcohol you are consuming. Looking at the Manhattan as our example cocktail, it contains roughly 28% alcohol by volume (ABV), which makes it seem much less potent than, say, straight whiskey, with its ABV of 40%. But it’s not really fair to compare these drinks on their ABVs since the amounts consumed tend to be different.

What matters isn’t the ABV of a drink, but the true amount of pure alcohol (ethanol) in a drink. In the chart below you can see a comparison of drinks’ ABVs, volumes, and actual amounts of ethanol.

DrinkABV (%)Volume of
1 Drink
(mL)
Absolute Amount of
Alcohol in 1 Drink (oz)
Beer63550.72
Wine121500.6
Manhattan281401.31
Bloody Mary122200.9
Straight vodka40450.6

So you can see that, even though we tend to consider one glass of wine, cocktail, or can of beer equal to “one drink”, the actual amount of alcohol you’re consuming can vary wildly by what kind of drink you are having.

The volume difference in drinks also influences how quickly we drink them. A beer tends to take longer to drink than a cocktail, or especially a shot, simply because it’s much larger. Purely based on volume, you could drink 2.5 Manhattans in the time it takes to drink one bottle of beer. So, by drinking beer, you essentially give yourself a lower alcohol per minute rate of consumption than when drinking cocktails.

If your options are only to drink cocktails and then beer, or beer and then cocktails, it makes sense to keep your heavier drinking for the beginning of your night. When you’re more sober you’ll be better able to pace yourself, evaluate how you’re feeling, and make changes to your rate of consumption if need be. Later in the evening, when your decision-making process is already compromised, beer is a safer option that won’t contribute as much to making you more intoxicated.

There is however another factor at play here: how well your body absorbs alcohol in different preparations. A 2007 study found that the vodka served diluted (with carbonated or still water) was absorbed faster than the vodka served neat. This means that even if the same amount of time is taken to drink straight liquor or a glass of wine (two drinks which contain about the same absolute amount of alcohol) the wine still may leave you more intoxicated, as it is better absorbed into your blood.

As for the grape or grain advice? Feel free to ignore it. A 2019 study compared the hangover severities of subjects who drank only beer, only wine, beer and then wine, or wine and then beer, and found that “neither type nor order of consumed alcoholic beverages significantly affected hangover intensity.”

Before the Breathalyzer There Was the Drunkometer

Originally posted here: https://mcgill.ca/oss/article/did-you-know-history/breathalyzer-there-was-drunkometer

The idea of a mechanism to measure the alcohol a person has consumed dates back quite far. A 1927 issue of Popular Science speaks of a device to ‘test a Tippler’s breath’, suggesting that housewives use W.D McNally’s new invention to see if their ‘errant’ husbands had been out drinking. The device is said to use chemicals that change colour, but what chemicals they were is unknown. This is howeverthe same mechanism behind the first portable breathalyzer just years later.

The first stable breathalyzer for out-of-lab use was developed by Rolla N. Harger in 1931 and named, hilariously, the drunkometer. This early breathalyzer functioned very differently from modern ones: it relied on a colour change due to a reaction between alcohol in the breath and acidified potassium permanganate. Lacking a quantitative scale it simply relied on the idea that more purple colour equaledmore alcohol.

The first breathalyzer as we currently know it was developed by Robert Frank Borkenstein in 1958. Borkenstein coupled a photometer with a reaction between the alcohol in a subject’s breath and potassium dichromate. 

This method allowed quantitative measurements of blood alcohol content, and let us move away from simply declaring people “50% drunk.”

His breathalyzer was a tremendous leap forward for law enforcement and road safety, as it gave police a non-invasive, quantitative and rapid method to confirm that somebody was too drunk to drive. 

Since Borkenstein’s breathalyzer, the technology hasn’t changed that much (read about it here). Except that breathalyzers are now less than $20 and small enough to fit on keychains.

All Alcoholic Beverages are Watered Down

Originally posted here: https://mcgill.ca/oss/article/did-you-know/how-much-alcohol-alcohol

In most of the world alcohol content is measured by volume. This gives us the familiar 12.5% on the side of a wine bottle. But what does this percentage really mean? 

The alcohol in alcohol is ethanol, and it’s ethanol that diffuses into our cells and inhibits our neuronal functions(makes us drunk). Most vodka is 40% alcohol by volume (ABV), meaning that in a normal-sized 750 mL bottle of Vodka, 300 of those millilitersare ethanol, and the other 450 mL arewater.

More interesting though is alcohol by weight (ABW), which is preferred by some states. 300 mL of ethanol is about 237 g. So if your average gin and tonicismade with 60 mL of gin, you’re only drinking 24 mL of ethanol or 19 g. The rest is just H­2O.

But if your gin has more water than ethanol, why are drinkers always dehydrated? It turns out that ethanol inhibits the production of antidiuretic hormone, whose function is to instruct your kidneys to reabsorb excess water from urine. With this hormone’s production suppressed, your kidneys pass too much water into your urine, and you’re left dehydrated, and constantly running to the bathroom.