Is Algaecal a Marine Mineral Miracle or Just Another Overhyped Health Product?

7 minute read
Originally posted here: https://mcgill.ca/oss/article/health-you-asked/algaecal-marine-mineral-miracle-or-just-another-overhyped-health-product-2

Every supplement makes flashy claims, but the ones made by AlgaeCal, that it is “the only calcium supplement that increases bone density” is particularly bold. You see, while every other calcium supplement currently on the market can, at best, decrease the rate of loss of bone density, AlgaeCal claims to be able to fully tip the scales in the other direction and make your bones denser with time. So, are the makers of AlgaeCal lying, or is it truly a miracle marine mineral? Does it represent a breakthrough in the way that we treat osteoporosis? Let’s look at the science.

Why do I care how dense my bones are?

Put simply, because bones that are less dense break more easily, and no one likes broken bones.

As we live our day-to-day lives our bones receive micro-damage. To combat this, our bones are in a constant state of remodelling. So constant in fact that up to 10% of our bones may be in the remodelling process at any one time. This remodelling has two main parts: bone resorption, and bone formation. Most of the time these two processes exist in equilibrium, but as we age this equilibrium can shift (for a wide variety of very complicated reasons). The result is osteoporosis. It affects roughly 10% of Canadians aged 40 or older and is characterized by weak and brittle bones that break in situations healthy bones would not, like when bending over to pick something up.

We can put a number on this loss of bone strength by looking at bone mineral (a calcium-containing compound that makes up 70% of the mass of a human bone called carbonated hydroxyapatite) since it is responsible for most of a bone’s strength. The bone mineral density (BMD) is a good predictor of fracture risks and can be easily and painlessly measured using a DEXA test.

As aside: What is a DEXA test?
DEXA stands for dual-energy X-ray absorptiometry, a non-invasive procedure that involves lying on a table for several minutes while two X-ray beams are aimed at your hip, spine, wrist or other bone. As for how this allows doctors to measure your BMD, I’ll let Osteoporosis Canada explain: “Think of the light shining through the curtains of your home on a sunny day. The amount of light that reaches your eye depends on the thickness of the curtains. If your curtains are very thick, very little sunlight passes through them. If, however, you replace them with a thinner fabric, the light coming through to you will increase substantially. Similarly, a bone densitometer uses a detector to measure the transmission of small amounts of X-rays (light) through your bones. The amount of light that passes through the bone is measured, thus providing a radiologist with a picture that indicates how dense (thick or thin) your bones are.”

How well do the existing calcium supplements work?

AlgaeCal costs more than 100 times as much as normal calcium supplements, so it must work much, much better right? Well, to answer that we first have to look at how well traditional calcium supplements work.

A 2007 meta-analysis published in The Lancet found, looked at both studies using fractures or BMD as their endpoint, and found that calcium supplementation was associated with a 12% risk reduction in all fracture types, and a 0.54% reduction in the rate of BMD loss in the hip and a 1.19% in the spine.

Basically, calcium supplements can help mitigate the decrease in BMD and increase in fracture risk that come with osteoporosis.

An aside: Why do we sometimes use fractures and sometimes use bone mineral density as our outcome?
The main negative outcome of osteoporosis is bone fractures. So, when we’re testing treatments for osteoporosis, we would ideally use fractures as our endpoint. Basically, that means that we would test if patients receiving a particular treatment suffer fewer fractures to see if that treatment works. This, however, can be difficult to do. If researchers run studies on osteoporosis treatments only lasting a few years, they may get artificially skewed numbers, as patients could experience no fractures during the study, but suffer one days after it ends, or they could experience two fractures during the study period but never another. Hypothetically, researchers could monitor osteoporotic patients from the time they’re diagnosed with osteoporosis to the time of their death, but the logistics of funding and operating an over-30-year-long study would be monumental. So, our options are to either run studies over only a few years using fractures as an endpoint but with a large number of participants to help account for the inconsistencies or to use bone mineral density as a surrogate clinical endpoint.

While some studies have found that calcium supplementation is not effective unless given with vitamin D, the Lancet meta-analysis found no statistical difference between the risk reductions offered by calcium alone versus calcium + vitamin D. Vitamin D only affected the fracture risk if the patient was deficient in it, and a similar effect was seen with calcium. Essentially, if you’re vitamin D or calcium deficient, it could be affecting your body’s ability to create new bones, but if you’re not, taking a vitamin D supplement likely won’t help you avoid broken bones, and taking calcium supplements will only help a bit.

How is AlgaeCal different from traditional calcium supplements?

What is it about AlgaeCal that allows it to do what other calcium supplements cannot? Well, what is AlgaeCal?

As you may have gathered from the name, AlgaeCal is made from algae. Specifically, a red algae found in the waters near Brazil, South Africa and New South Wales in Australia. The AlgaeCal website explains that the balls of algae are harvested by hand, sun-dried and then milled into a powder. It states that it is “pure whole food,” even though it is very literally not whole but ground up and that AlgaeCal contains “Nutrients. Not Chemicals.” I hate to be the one to tell them, but calcium, the selling point of their supplement, is so much of a chemical that it’s even on the periodic table of the elements!

The website states that AlgaeCal Plus naturally contains “all 13 essential bone supporting minerals: calcium, magnesium, boron, copper, manganese, silicon, nickel, selenium, strontium, phosphorus, potassium, vanadium, and zinc”, as well as vitamins D3 and K2. Unfortunately, they only provide values for six of these minerals, making it impossible to know if the others are present in useful amounts.

Even for the minerals we know the amounts of, the research supporting their effects on BMD is a bit weak. This 2008 study found no relation between boron intake and BMD in the femur or lower spine, and this 2000 studyfound that low vitamin K2 intake was not associated with low BMD.

So, if these minerals don’t matter, is the calcium in AlgaeCal somehow different than traditional calcium supplements?

Well, it claims to contain “pre-digested” or “plant-digested” calcium. Unsure what this meant, even having studied science for many years, I reached out to the company and asked. Unfortunately, their answer didn’t really explain much: “In regards to pre-digested, the algae itself absorbs all 13 bone-building minerals and pre-digests them for you.” I guess what they mean by pre-digested is just one of the great mysteries of the universe, like dark matter and why it’s impossible to eat only one potato chip.

Anyways, whatever pre-digested means, all that really matters is the bioavailability of the calcium or the amount that is absorbed through your digestive tract and into your bloodstream.

Calcium in conventional calcium supplements (or “rock-based” calcium, as AlgaeCal calls it) can be in a variety of salts, which, according to a 2000 review have bioavailabilities ranging from 23-37%. So, this is the number to beat for AlgaeCal.

Too bad we have no idea what the bioavailability of AlgaeCal actually is! While a clinical trial to answer that question was started in 2009 and finished in 2010, no data from it was ever published. Perhaps because it didn’t show the results that AlgaeCal wanted it to.

Nonetheless, the AlgaeCal website claims that there are 4 studies that support their product’s effectiveness. So, let’s take a look at those.

The studies of AlgaeCal

The first one published looked at AlgaeCal’s effects on human bone cells. The researchers treated human osteoblast cells with either AlgaeCal, calcium carbonate or calcium citrate, and found that AlgaeCal-treated cells showed statistically better function than the cells treated with the other calcium compounds. But there are two problems with this study. First, results in Petri dishes rarely translate directly to humans. Second, this study was funded, at least in part, by AlgaeCal. A conflict of interest that throws all of these results into question.

The next two studies (12), both done in 2011, were thankfully done in humans. They compared several “bone-health plans” (see image below) implemented in 176 participants and found that any of the plans were associated with increases in BMD. Not just that they slowed losses but that they increased bone mineral density!

Unfortunately, a few aspects of the designs of these studies prevent us from trusting their results. They weren’t blinded in any fashion, which means the results could be extremely biased, and they were not placebo-controlled. Oh, and also the lead scientist, Dr. Gilbert Kaats, is the CEO of Integrative Health Technologies inc., a company that has invested in AlgaeCal, and funded one of the studies! That’s a conflict of interest if I’ve ever seen one.

The last study on their site, from 2016, is also headed by Dr. Kaats, and funded via a grant provided by AlgaeCal themselves. Like the others, it wasn’t placebo-controlled or blinded in any fashion and, like the others, it showed increases of BMD over a 7-year period.

If we could trust these results, that is to say, if these results were replicated in a double-blind, placebo-controlled study that wasn’t funded by AlgaeCal or led by someone with a conflict of interest, it would be incredible. If we truly could increase the BMD of those with osteoporosis, not just slow their losses, it would literally revolutionize how doctors treat these patients. But when something seems too good to be true, it usually is.

It’s certainly true that new drugs or treatments are sometimes discovered that revolutionize medicine. A quick look at ganciclovir or penicillin proves that. But it doesn’t happen often, and before we start considering AlgaeCal revolutionary, we need an independently performed study.

So, while we don’t know if AlgaeCal is a pseudoscientific product, it sure does market itself like one. Ever since I first googled this product, I have been inundated with ads for AlgaeCal on every platform from Twitter to Buzzfeed. Now, aggressive marketing doesn’t necessarily mean a product isn’t evidence-based. However, when I’ve previously looked into the science behind products that forcefully target me with ads (like BioSilAllerpet or Skinny Magic) the evidence has not been in their favour.

As of right now, it’s hard to say whether AlgaeCal works or not. All we can really say is that there’s no good evidence that it does. Also, it’s expensive. At $2.17 CAD per day, you would save quite a bit of money by instead buying a traditional calcium supplement and throw in a vitamin D supplement too, for $0.14 per day.

So Your Kid is Trans and You Have Questions – SciMoms

12 minute read
Originally posted here: https://scimoms.com/so-your-kid-is-trans-and-you-have-questions/?fbclid=IwAR0mJ87CcS9HY0eDiTWq7BC1m3f1hFxGqT9uS0IQdeWj2YeI7-72Y0L8KoY

I was overjoyed to get the opportunity to write about this important topic for SciMoms. As a scientist, I’m sick of bigots trying to use biology to justify their hatred. I wanted to create a resource to help parents, children and allies alike, that would help shift the responsibility of explaining their identities off of trans indidividuals. I’m so happy with this piece, and I hope you find it useful!
Read “So Your Kid is Trans and You Have Questions” here!

Should I Attach a Bell to My Cat’s Collar?

3 minute read
Reposted with the permission of Animal Wellness Magazine. See the original here!

Consider these pros and cons before attaching a bell to your cat’s collar.

Does your cat bring you dead animals? While this common behaviour is kind of yucky, it’s also sort of endearing – your cat is bringing you what she believes to be an excellent gift. But despite their generous intentions, hunting by domestic cats is affecting ecosystems and pushing some species to extinction. So what can you do to keep your cat from catching wildlife? There are two primary solutions to consider: keep her inside, or attach a deterrent (such as a bell) to her collar.

A closer look at the options

Of course, the easiest method of preventing your cat from killing birds and rodents is to keep her inside all the time. In the safety of your home, your feline’s exposure to prey animals will be limited to any mice that happen to get into your house. If you aren’t willing to curb your feline’s wanderlust, a common alternative is to attach a bell to her collar to alert wildlife of her approach. But is this a safe and effective option?

The pros and cons of bells

number of studies have looked at whether or not bells help prey escape from cats, and the general consensus is yes! Bells on collars seem to reduce the amount of prey caught by about half, which could be enough to no longer pose a threat to ecosystems.

Effectiveness aside, many pet parents worry that a bell will hurt their cat’s ears. According to Veterinary PhD student Rachel Malakani, a collar bell will produce sound at about 50-60 dB, but studies have shown cats to be unaffected by sounds under 80 dB. While some cats with anxiety may not react well to the bell’s sound, it’s likely that the majority of cats simply won’t care.

Some owners worry that as well as alerting prey, a bell would also alert large predators to a cat’s presence. While this is possible, given most predator’s acute hearing, it’s unlikely that the relatively quiet noise of a bell would make the difference between your cat getting detected or not. If you live in an area where your cat is at risk of being attacked by large animals you should probably be keeping your cat indoors anyway, or at least supervise their outdoor activities. You can also invest in a cat enclosure, which will allow your feline to enjoy the fresh air safely!

Bell Alternatives

If you’re unwilling to put a bell on your furry buddy, you do have another option – cat bibs. Sold under names like Birdsbesafe, these devices are brightly colored to alert potential prey to the cat’s presence before they can pounce. While your cat might look a bit silly wearing a rainbow bib, the scientific research on these products shows they reduce predation rates by roughly the same amount as bells. That said, the devices that rely on color to alert potential prey work much better on birds (who have very good color vision) than they do on small mammals (who generally have quite poor vision).

If you’re scared of attaching any collars or collar-mounted devices to your felines – you shouldn’t be. While fears that cats can become strangled or trapped by a collar caught on debris are common, actual adverse effects from collars are rare. One study looked at 107 veterinarian practices and found only one collar-related injury per every 2.3 years, with collar-related deaths being even rarer. You can mitigate your fears further by using a breakaway collar.

If your cat ventures outdoors, especially if you live in an area with endangered species, please do your part to aid conservation efforts by outfitting your kitty with an anti-hunting device.

My Dog Ate Chocolate and He Was Fine, so What’s the Big Deal?

7 minute read
Originally posted here: https://mcgill.ca/oss/article/health/my-dog-ate-chocolate-and-he-was-fine-so-whats-big-deal

If you ask a dog owner what dogs cannot eat, they’ll list some foods like onions, garlic, rhubarb, grapes and chocolate. (As an aside, if they say grains, don’t listen to them.) Dogs’ inability to safely consume chocolate is common knowledge, but thanks to their proclivity for eating anything they can get their mouths on, many dogs are nonetheless treated for ingesting chocolate every year.

However, there are also many, many dogs who eat chocolate (with or without their owner’s knowledge) who are perfectly fine, no treatment necessary. If chocolate is so bad for dogs, why are these candy-consuming canines fine?

Because, as with all things, the dose makes the poison.

The components of chocolate that are toxic to dogs are theobromine and caffeine. These two chemicals are, structurally, almost identical, and both belong to a group of chemicals called methylxanthines.

Part of what makes methylxanthines so dangerous to animals is how slowly they process them, in particular, theobromine. While dogs reach peak serum (the non-cell part of blood) levels of caffeine after 30-60 minutes and eliminate half of an ingested dose in 4.5 hours, they don’t reach peak serum levels of theobromine until after 10 hours and take 17.5 hours to eliminate half of it.

While they’re in the blood, methylxanthines have a few effects. Primarily, they inhibit the activation of adenosine receptors. These receptors are generally responsible for making us feel sleepy, and decreasing the activity of our bodies. Methylxanthines inhibit these sleepy feelings and act as stimulants.

An aside: Grapefruit’s effects on theobromine metabolism

The enzyme responsible for metabolizing theobromine is a member of the cytochrome P450 family. If you’ve heard of these enzymes its likely because you take a medication that is similarly affected by them (such as Viagra, Cialis, Erythromycin, Xanax and many others) and you’ve been warned to stay away from grapefruit juice. This is due to compounds in grapefruit interfering with the P450 enzymes. Without properly functioning enzymes, medications aren’t broken down as they should be, and overdoses can occur. These compounds aren’t exclusive to grapefruits: they’re also found in pomelos, bitter oranges and Seville oranges that are used to make marmalade. Luckily dogs don’t often consume the fruits that harbour these compounds, however, if Marmaduke ever eats a jar of marmalade as well as some chocolate, he would be in serious trouble. 

So, what does this mean for your dog who ate a chocolate bar? It means they will feel nauseous and probably vomit, they’ll have a high heart rate, diarrhea, show signs of hyperactivity and, if they consumed a high dose of methylxanthines, tremors, seizures and possibly death.

What exactly is a high dose of methylxanthines however depends on your dog.

According to the ASPCA mild effects of theobromine poisoning can be seen at a dose of 20 mg/kg. Severe signs begin at about 40 mg/kg and seizures can begin at 60 mg/kg. A median lethal dose (LD50) is the dose of a toxin required to kill half of a sample population. It’s a common way of measuring a lethal dose of a substance in toxicological research, and for theobromine, the LD50is 100-200 mg/kg.

Notice that because all of these doses are given per kilogram of dog, what’s a low dose of theobromine for a German Shepard could be an exceptionally large dose for a chihuahua.

To illustrate my point, allow me to introduce three dogs. First, we have Baci, a 5-year-old, 7-kg Maltipoo. She’s considered a small dog by all reasonable metrics.

Next meet Chanelle, a 10-year-old Golden Retriever who is solidly medium-sized at 25 kg.

Last, we have Jupiter, a 5-year-old Malamute/German Shepherd cross who is quite large at 50 kg.

I’ve run some numbers to see how each of these dogs would fair if they ate the same amounts of chocolate. You can see my results in the chart below and can replicate my calculations easily using one of the online chocolate toxicity calculators.

(Green = <20 mg/kg, yellow = 20-40 mg/kg, red = 40-60 mg/kg, black = >60 mg/kg)

So, we can see that while Jupiter will probably be fine if he scarfs down 1/3 cup of cocoa powder (the amount in your average recipe for brownies), Chanelle would likely be sick, and Baci would be facing seizures and possibly death.

It’s easy to see, when you start playing with the numbers, how so many dogs can eat chocolate-containing foods and be totally fine. Chanelle could easily consume ½ cup of chocolate ice cream, or a chocolate pudding cup, or a chocolate cupcake and not even show the slightest sign of being sick!

An aside: What about mulch made from cocoa bean shells?

In recent years cocoa-bean-based mulch has gained popularity as an attractive alternative to traditional mulch. It can be good for your garden, contributing nutrients and preventing weed growth, but it can be really bad for your dog. With up to 32 mg of theobromine per gram, cocoa bean mulch can be a more potent source of theobromine than even pure unsweetened baking chocolate. If you can’t guarantee that a dog won’t munch on your mulch, you’re better off sticking to the traditional mulches, which come with the bonus of being much cheaper! 

Even if your dog doesn’t get sick from eating small amounts of chocolate however, it’s still best that they avoid it. One study found that repeated theobromine exposure led to the development of cardiomyopathy (a chronic disease of the heart muscle that makes it harder for the heart to pump blood) in dogs.

An aside: There may also be a genetic component to dogs’ ability to metabolize theobromine

Dogs with a particular variant in their CYP1A2 gene (the variant is 1117C>T) lack the ability to properly metabolize and break down some substances, including lidocaine, naproxen and theobromine. This has important implications in their veterinary treatment and could explain why some dogs get sick after eating very little chocolate.  

So, what should you do if you suspect your dog has eaten chocolate? You have a few options. You can check an online calculator (like this one) to see if your dog is likely to exhibit symptoms, or call animal poison control (1-888-426-4435 in Canada and the U.S.). Keeping in mind that such resources are not substitutes for veterinarian care, you should monitor your dog closely no matter what they say, looking for symptoms like a fast heart rate, vomiting or tremors.

If your dog ate an unknown amount of chocolate; is exhibiting symptoms; is pregnant (theobromine can cross the placenta and affect the puppy); or has other health complications, you should take them to a vet right away. Symptoms may not develop until up to two hours after ingestion, but veterinarian anti-chocolate treatments are most effective if performed as soon as possible after ingestion.

And what exactly do they do to cure a dog of theobromine poisoning? Gastric decontamination. The first step is to empty the stomach (if the ingestion was recent enough). This is often done with a drug called apomorphine which is administered through the eye so that it is quickly absorbed.

Next a vet will administer activated charcoal, a finely powdered material capable of binding a variety of drugs and chemicals. Activated charcoal is most effective if given immediately after ingestion of the toxin and is usually given by mixing it with wet dog food (beware: it will turn your dog’s poop black). In some cases, repeat administrations of charcoal are necessary, but in others just one dose will do it.

Beyond these steps, a theobromine-poisoned dog will just be given medicines to manage their specific symptoms, such as Diazepam for seizures or hyperexcitability, beta blockers for high heart rate, Atropine for low heart rate or others.

Before you go: a note on cats

As it turns out, cats are actually more susceptible to theobromine poisoning than dogs, but we don’t ever hear about a cat getting sick from eating chocolate. Why is that?

Mainly because cats don’t eat as indiscriminately as dogs. Dogs are known for eating just about anything they can find (including joint butts, a practice that places them at risk for cannabis poisoning), whereas cats tend to be picky eaters. In part this is explained by the fact that cats lack the ability to taste glucose.

If all chocolate tasted like 100% dark chocolate, you likely wouldn’t eat much of it either.

Take-home message:
 • Chocolate is poisonous to dogs mostly because of its theobromine content, which dogs are unable to metabolize effectively. 
 •The amount of chocolate a dog can eat without showing symptoms varies drastically with their weight
 • If your dog eats chocolate, you should monitor them closely and seek veterinary attention if they show any symptoms, or if they are very young, pregnant or have other health concerns.

Special thanks to Rachel Malkani MSc. CDBC and veterinary PhD candidate, and to Henry for inspiring this article by, as you may guess, eating chocolate.

You Inherit Part of Your Fingerprint from Your Parents

2 minute read
Originally posted here: https://mcgill.ca/oss/article/did-you-know/you-inherit-part-your-fingerprint-your-parents

Our fingerprints are a one-of-a-kind pattern, so unique to an individual that even identical twins don’t share them. And yet I’m here to tell you that you inherit part of your fingerprint from your parents. Huh?

If you look closely at your fingerprints, you’ll notice that their patterns are one of three main types: loops, whorls or arches.

If you were to look at your fingerprint under a microscope though you’d see that while the ridges on your fingers follow one of the patterns, there are small variations in them, like breaks, forks and islands.

While the general shape of your fingerprints is heritable, these small details, often called minutiae, are not. Why that is comes down to how fingerprints are formed.

When a fetus is about 7 weeks old, they begin to form pads on their hands and feet called volar pads. These pads only exist for a few weeks, because at around 10 weeks they start to be reabsorbed into the palms of the hands and feet.

Around this time, the very bottom layer of the epidermis begins to form folds due to pressures from the growing skin. These folds are the precursors to your finger ridges, or fingerprints, and the pattern they take depends on how much of the volar pad has been absorbed when they begin to form. If the volar pad is still very present, then you’ll develop a whorl pattern. If the volar pad is partially absorbed, you’ll form a loop pattern, and if it’s almost entirely absorbed, you’ll form an arch pattern.

So how do genetics come into this? Well, the rate of volar pad reabsorption and the specific timing of the creases in the epidermis appearing are genetically linked. However, these events only determine the general shape of the fingerprint. The minutiae are influenced by things such as the density of the amniotic fluid, where the fetus is positioned and what the fetus touches while in utero. Since every fetus will grow in a different environment, their minutiae will differ. Even twins that share a uterus will interact with their surroundings differently. So even if your fingerprint shape matches that of your parents, if you look closer, you’ll see the differences that make your prints uniquely yours.

Did you know that fingerprints aren’t only a human feature? To read about fingerprints in koalas, click here!

Koalas Have Fingerprints Just like Humans

2 minute read
Originally posted here: https://mcgill.ca/oss/article/did-you-know/koalas-have-fingerprints-just-humans

In 1975 police took fingerprints from six chimpanzees and two orangutans housed at zoos in England. They weren’t just looking for a unique souvenir; they were testing to see if any unsolved crimes could be the fault of these banana-eating miscreants.

While these primates ended up being as innocent as they seemed, the police did determine that their fingerprints were indistinguishable from a human’s without careful inspection.

A few years later, in 1996, a different type of mammal came under police suspicions: a koala!

While it makes sense that orangutans and chimpanzees would have fingerprints like us, being some of our closest relatives, koalas are evolutionarily distant from humans. It turns out that fingerprints are an excellent example of convergent evolution, or different species developing similar traits independently from each other.

Another example of convergent evolution is seen in the bony structure supporting both birds’ and bats’ wings.

Fingerprints are thought to serve two purposes. First, they aid in grip, allowing an animal to better hold onto rough surfaces like branches and tree trunks. Second, they increase the sensitivity of our touch and allow us a finer level of perception regarding the textures and shapes of the things we hold.

Why this is useful for humans is obvious. Our hands are made to grasp, hold and manipulate objects. Whether it’s some nuts we foraged for or our Xbox controller, we humans spend all day every day relying on our sensitive sense of touch.

For koalas, it’s not really so different. They are incredibly picky eaters, showing strong preferences for eucalyptus leaves of a certain age. It seems that their fingerprints allow them to thoroughly inspect their food before they chow down.

Police aren’t exactly worried about koala bank robbers, but it is possible that koala fingerprints could be found incidentally at a crime scene and be mistaken for a human’s, making it pretty difficult to find a match.

To read about how fingerprints form, how parts of them are genetic, and why identical twins have different ones, click here!

You’re probably storing leftovers wrong (especially if it’s rice)

3 minute read
Originally posted here: https://mcgill.ca/oss/article/did-you-know-health/youre-probably-storing-leftovers-wrong-especially-if-you-eat-rice

If, like me, you aim to cook dinners that provide both your next day’s lunch as well as a freezer portion to be thawed at some future date, you may want to stop. At least with rice.

Uncooked rice can contain spores of Bacillus cereus, a bacterium that can cause two different types of food poisoning. The first type is characterized by vomiting (and thus is called the emetic form). It results from consuming a toxin produced by the bacteria while they’re growing in your food and has a short incubation time of 1-5 hours. The second is characterized by diarrhea (and is non-surprisingly called the diarrhoeal form). It results from a toxin that is produced in your small intestine as the bacteria grow there and has a longer incubation time of 6-15 hours.

The two forms are commonly associated with different types of foods. The diarrhoeal form has been linked with foodstuff like soupsmeatvegetablesand milk products including formula. The emetic form comes from a more limited list of culprits, as it’s mostly associated with starchy foods that have been improperly stored like rice, pasta, pastries or sauces.

But what does “improperly stored” actually mean?

If a raw food is contaminated with B. cereus (as much rice is) and then cooked, some spores will remain in the cooked product (unless you’re in the habit of heating your rice to above 100 ˚C for extended periods of time). These spores, If left standing in temperatures between 10 ˚C and 50 ˚C, such as on your stove or countertop, find themselves in their ideal environment (wet and warm) to germinate, grow and produce the toxin that will make you sick.

It doesn’t take long for the spores to reproduce either. A colony of B. cereuscan double in size within 20 minutes if kept at 30˚C. The routine reheating of your food will not help to deactivate the toxin or kill the bacteria. Since this bacteria and its toxin are so resistant to heat your only hope of dodging food poisoning is to avoid allowing the bacteria to germinate.

To sidestep a nasty bout of illness caused by B. cereus you should aim to eat your food as soon as possible after it is cooked. If you can’t do that, then hot foods should be kept above 60˚C and cold foods, below 5˚C. Meats and vegetables should be cooked to an internal temperature of 60˚C and kept there for at least 15 seconds. Frozen foods should ideally be thawed in the fridge or as a part of the cooking process.

If storing leftovers for later, they should be rapidly cooled in the fridge as fast as possible (according to the NHS, within 1 hour is best). You should avoid storing hot leftovers in deep dishes or stacking containers together, as it will cause the food to cool slower. When reheating leftovers make sure they reach an internal temperature of at least 74˚C and don’t keep them for more than seven days, even in the fridge.

When dealing with high-risk ingredients (like rice, grains and other starchy foods) it’s best to not keep leftovers at all. But if you do, try not to keep them for more than one day, and never reheat them more than once. Even freezingdoesn’t kill bacteria but rather just stops them from multiplying, so, by all means, freeze your leftover curry, but make fresh rice when it’s time to eat it again.

Considering the amount of improperly stored rice I now know I’ve eaten it seems almost a miracle that I haven’t gotten sick yet. Then again, food poisoning with B. cereus is often confused with the 24-hour flu, so I may have already paid for my mistakes without even knowing it.

Let’s all learn from my mistakes and start storing our leftovers properly.